Toughening Mechanisms in Nanolayered MAX Phase Ceramics—A Review
نویسندگان
چکیده
منابع مشابه
Toughening Mechanisms in Nanolayered MAX Phase Ceramics—A Review
Advanced engineering and functional ceramics are sensitive to damage cracks, which delay the wide applications of these materials in various fields. Ceramic composites with enhanced fracture toughness may trigger a paradigm for design and application of the brittle components. This paper reviews the toughening mechanisms for the nanolayered MAX phase ceramics. The main toughening mechanisms for...
متن کاملToughening mechanisms in bioinspired multilayered materials.
Outstanding mechanical properties of biological multilayered materials are strongly influenced by nanoscale features in their structure. In this study, mechanical behaviour and toughening mechanisms of abalone nacre-inspired multilayered materials are explored. In nacre's structure, the organic matrix, pillars and the roughness of the aragonite platelets play important roles in its overall mech...
متن کاملToughening mechanisms in elastomer-modified epoxies
The role of matrix ductility on the toughenability and toughening mechanism of elastomermodified, diglycidyl ether of bisphenol A (DGEBA)-based epoxies is investigated. Matrix ductility is varied by using epoxide resins of varying epoxide monomer molecular weights. These epoxide resins are cured using 4,4' diaminodiphenyl sulphone (DDS) and, in some cases, modified with 10vol % carboxyl-termina...
متن کاملToughening mechanisms in a multi-phase alloy of nylon 6,6/polyphenylene oxide
Toughening mechanisms in a nylon 6,6/polyphenylene oxide (PA/PPO) alloy are studied. This alloy consists of well dispersed PPO particles (containing an elastomeric phase) in a PA matrix. Both crazing and shear yielding mechanisms are found to be sequentially operative in this alloy. When a crack propagates in the material, a crazed zone forms ahead of the crack tip. This crazed zone then transf...
متن کاملNanoscale Deformation and Toughening Mechanisms of Nacre
We found direct evidence that a single-crystal-like aragonite platelet is essentially assembled with aragonite nanoparticles. The aragonite nanoparticles are readily oriented and assembled into pseudo-single-crystal aragonite platelets via screw dislocation and amorphous aggregation, which are two dominant mediating mechanisms between nanoparticles during biomineralization. The heat treatment b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials
سال: 2017
ISSN: 1996-1944
DOI: 10.3390/ma10040366